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Abstract

Three-dimensional (3D) elastic–plastic finite element analyses (FEA) are performed to study constraint effect on the

crack-front stress fields for single-edge notched bend (SENB) specimens. Both rectangular and square cross-section of

the specimens with a deep crack of a=W ¼ 0:5 are considered to investigate the effect of specimen size. A square-cross-
section specimen with a shallow crack of a=W ¼ 0:15 is also considered to examine the effect of crack depth. Stresses
from FEA at the crack front on different planes of the specimen are compared with those determined by the J–A2 three-
term solution. Results show that in-plane stress fields can be characterized by the three-term solution throughout the

thickness even in the region near the free surface. Cleavage fracture toughness data is compared to predict the effects of

specimen size and crack depth on fracture behavior. It is found that the distributions of crack opening stress are nearly

the same for the SENB specimens at the critical J which is consistent with the RKR model. Furthermore our results
indicate that there is a distinct relationship between the crack-front constraint and the cleavage fracture toughness. By

introducing the failure curves, the minimum fracture toughness and scatter band can be well captured using the J–A2
approach.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Fracture toughness has been considered as a material property, which means it should be independent of

size and geometry. Most of the current integrity analyses are based on this property. However, it has been

found that fracture toughness depends on the specimen size, crack depth, geometry, and loading condition.

These effects have been attributed to different crack-front constraint. As a result, it is questionable to apply

the fracture toughness value determined from small laboratory specimens to the integrity assessment of

large defected structures.
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Several theories and approaches have been proposed to predict the specimen size and crack depth de-

pendence on fracture toughness and to quantify the crack-front constraint against the plastic flow. Among

them, three representatives are the J–T theory proposed by Betegon and Hancock (1991), the J–Q theory
developed by O�Dowd and Shih (1991, 1992), and the J–A2 three-term solution developed by Yang et al.
(1993a,b) and Chao et al. (1994).

The present work is concerned with the application of the J–A2 three-term solution (hereinafter called

the J–A2 solution) to 3D crack-front stress field and the interpretation of cleavage fracture for single-edge
notched bend (SENB) specimens. Yang et al. (1993a,b) and Chao et al. (1994) have carried out a complete

analysis of higher-order crack-front fields in power-law hardening materials. A three-term expansion they

developed is controlled only by two parameters, namely J and A2. The three-term asymptotic stress field can
be written as
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where r0 is a reference stress that is generally equal to the yield stress, the angular functions ~rr
ðkÞ
ij (k ¼ 1,2,3)

and the stress power exponents sk (s1 < s2 < s3) are only dependent of the hardening exponent n and in-
dependent of the other material constants and the applied loads. L is a characteristic length parameter
which can be chosen as the crack length a, the specimen width W , or the thickness B. The parameters A1 and
s1 from the HRR fields (Hutchinson, 1968; Rice and Rosengren, 1968) are given by
A1 ¼
J

ae0r0InL

� ��s1

; s1 ¼ � 1

nþ 1 ð2Þ
and s3 ¼ 2s2 � s1 for nP 3. In Eq. (2), J is the J -integral by Rice (1968), a is a material hardening constant,
e0 is the yield strain, n is the strain hardening exponent, In is an integration constant that depends on n. A2 is
an undetermined parameter and may be related to the loading and geometry of the specimen. The non-

dimensional functions and s2 in Eq. (1) are given in a report written by Chao and Zhang (1997). Zhu and
Chao (1999) have extended the three-term solution to non-hardening materials. How the mathematical

solution of Eq. (1) can be used for a two parameter fracture testing is presented in Chao and Zhu (1998).

The J–A2 concept has also been extended to quantify the constraint effect on J -resistance curves (Chao and
Zhu, 2000).

Most studies on constraint effects have been carried out for two-dimensional (2D) crack problems; but

not for 3D. One difficulty on the 3D crack analysis lies in the enormous computational expenses besides the

complex character of the stress and strain fields at a 3D crack front. Recently, the authors showed that 3D

crack-front fields in a thin plate are well represented by the J–A2 three-term solution under SSY and LSY
conditions (Kim et al., 2001; Zhu et al., 2001).

As an extension of our previous studies on the 3D crack-front field of thin plate, current work is aimed

to quantify the level of 3D crack-front constraint in thick SENB specimens. The J–A2 solution is applied to
characterize the crack-front constraint effect on cleavage fracture toughness. To study the effect of specimen

size, two SENB specimens, one with square and the other with rectangular cross-section, having a=W ¼ 0:5
(simply referred to as deep square specimen and rectangular specimen) are considered. In order to exam-

ine the effect of crack depth, another square-cross-section SENB specimen having a shallow crack of

a=W ¼ 0:15 (hereinafter called shallow square specimen) is also considered. All the specimens have the
same thickness, B. The rectangular specimen has the width, W , equal to twice the thickness, W ¼ 2B, while
both the deep square and shallow square specimens have W ¼ B. The span of each specimen is four times
of the specimen width. Consequently, the volume of the rectangular specimen is four times as large as that
of the square specimen.
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2. Computational procedures

3D elastic–plastic FEA are conducted using the commercial FEA code, ABAQUS (1998). All the SENB

specimens use the similar FEA mesh as shown in Fig. 1. The size of the square specimens is 31.8 · 31.8 · 127
mm (thickness ·width · span, B� W � S), and the rectangular specimen is 31.8 · 63.6 · 254 mm. A deep

crack with a=W ¼ 0:5 is considered for both the square and rectangular specimens. Shallow crack (a=W ¼
0:15) is considered only for the square specimen. The square specimens have the same size as those used by
Sorem et al. (1989) and the rectangular specimen used by Wellman et al. (1988).

The FEA calculations in this work are based on the J2 incremental theory of plasticity. A similar co-
ordinate system is employed for all the specimens such that the x-axis lies in the crack plane and is normal
to the straight crack front; y-axis is orthogonal to the crack plane and the z-axis lies on the thickness di-
rection. The origin of the coordinate system is located at the crack tip on the center plane. Only a quarter of
the specimen (region 06 h6 p, 06 z6 1=2tÞ is modeled due to the symmetry with respect to the mid-plane
(z ¼ 0) and the crack surface plane (y ¼ 0). Along the thickness direction (z-axis), the identical planar mesh
is repeated from the symmetry plane (i.e. mid-plane, z ¼ 0) to the free surface (z=t ¼ 0:5). In order to catch
the drastic change of the stress field near the free surface, thickness of successive element layer is expo-

nentially reduced from the mid-plane toward the free surface. 20-node quadratic brick elements with re-

duced integration and seven element layers throughout the half thickness are used. Within each layer, 30

focused rings of elements encompass the crack front for the deep square and the rectangular specimens and

20 elements for shallow square specimen. The size of each ring increases gradually with the radial distance
from the crack tip. The size of the smallest element for the deep square, rectangular, and shallow square

specimens are 1.08 · 10�4, 2.16 · 10�4, and 3.06 · 10�4 of the thickness respectively. In the circumferential
direction, 24 equally sized elements are defined in the angular region from 0 to p.
Fig. 1. Finite element mesh for the SENB specimens.



Fig. 2. Tensile test data for A36 steel: (a) modified test data for FEA, (b) curve fit to the Ramberg–Osgood constitutive equation.
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The material considered here is the low-strength structural steel A36. The tensile test result and the input

data used for FEA is reproduced in Fig. 2(a) (Sorem, 1989). For the application of the J–A2 solution, this
stress–strain data is fit to a power-law curve shown in Fig. 2(b). The power-law curve has the Ramberg–

Osgood stress–strain relationship as follows:
e
e0

¼ r
r0

þ a
r
r0

� �n

ð3Þ
where r0 and e0 ¼ r0=E (here E is the Young�s modulus) are the yield stress and the yield strain, respec-
tively, a is a material constant, and n is the strain hardening exponent. The curve–fit gives n ¼ 5, and; a ¼
4.6. The other material properties are; E ¼ 200 GPa, r0 ¼ 248 MPa, and the Poisson�s ratio m ¼ 0:29.
In this study, J ð¼ J localÞ calculated by ABAQUS hereinafter denotes the local J -integral throughout the

text. The stress values to be analyzed are taken throughout the thickness in the range 16 r=ðJ=r0Þ6 5.
3. Numerical results and analysis

3.1. Stress field for the deep square specimen

Fig. 3 shows the radial distributions of rrr and rhh obtained from FEA and the J–A2 solution at h ¼ 0� at
the mid-plane (z=t ¼ 0) for the deep square specimen. Plane-strain HRR field, plane-stress HRR field, and
2D plane-strain FEA results under SSY condition (hereinafter called 2D results) are also shown in Fig. 3.

All the stress components are normalized by the yield stress and are plotted against the normalized dis-

tance, rr0=J . Three loading levels, 62%, 74%, 80% of the limit load, are considered as the remote loads and
these result in J=ðBr0Þ ¼ 0:0012, 0.0038, 0.0081, respectively, at the mid-plane. Limit load is calculated
from the assumption of plane-strain condition. Under the loading levels less than 62%, the stress distri-

butions are the same as that of 62% loading level shown in Fig. 3. A2 is determined using a point match
technique as following; (1) The FEA stress value at a point (r; hÞ close to the crack front is determined and
(2) then the FEA stress value is set to equal to the three-term analytical result to yield the A2 value. The
characteristic length parameter is chosen as the specimen thickness, B. Specifically rrr and rhh at r � 1:5
ðJ=r0Þ, h ¼ 0� are used to determine an average A2 for all the data presented in this paper. Both HRR fields
and the three-term solution are determined from the tabulated results of Chao and Zhang (1997). Fig. 4
depicts the angular distributions of rrr, rhh and rrh at the mid-plane (z=t ¼ 0) with rr0=J ¼ 2.
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Fig. 3. Variation of stresses with normalized radial distance at h ¼ 0� at the mid-plane (z=t ¼ 0) for the deep square SENB specimen
with a=W ¼ 0:5 (a) rrr, (b) rhh: J=ðBr0Þ ¼ 0:0012, 0.0038, 0.0081 and the corresponding A2 ¼ �0:546,�0:560,�0:567, respectively.
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Figs. 3 and 4 show that, at the mid-plane, the J–A2 solutions match very well with the FEA results along
the angular and radial directions within the interested range of 16 r=ðJ=r0Þ6 5. All the FEA stress results
for rrr, rhh and rrh fall between plane-strain HRR field and plane-stress HRR field. When the load is small,

3D FEA results are same as 2D results, but they deviate from 2D results as the load increases because of the

relaxation of crack-front constraint.

The radial distributions of rrr and rhh at h ¼ 0� at the plane near the free surface (z=t ¼ 0:49) are plotted
in Fig. 5, while the angular distributions of rrr, rhh and rrh at rr0=J ¼ 2 are shown in Fig. 6. Compared with
the stress distributions at the center plane in Fig. 3, FEA results at the plane near the free surface show
great relaxation on the crack–front constraint. Though the plane stress condition is expected to be dom-

inant at the free surface, FEA results at z=t ¼ 0:49 are well represented by the J–A2 solution that is based on
the plane strain condition. Under large load, the stress fields are close to plane-stress HRR field and some

stresses are below the plane-stress HRR field in rr0=J > 2.

3.2. Stress field for the rectangular specimen

Fig. 7 plots the radial distributions of rrr and rhh obtained from FEA and the J–A2 solution at h ¼ 0� at
the mid-plane (z=t ¼ 0) for the rectangular specimen. Three loading levels, 37%, 62%, 74% of the limit load,
are considered and these result in J=ðBr0Þ ¼ 0:0007, 0.0031, 0.0156, respectively, at the mid-plane. In order
to cover the scattered fracture toughness data that will be dealt discussed later, different loading levels from

those of the deep square specimen are used. Similar to the deep square specimen, plane-strain HRR field

provides the upper bound and plane-stress HRR field provides the lower bound in Fig. 7. 3D FEA results

are much closer to plane-strain HRR field than to plane-stress HRR field. The angular distributions of rrr,
rhh and rrh at rr0=J ¼ 2 show the same trend as in Fig. 4. Fig. 7 indicates that all the normalized FEA
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Fig. 4. Angular distribution of stresses at rr0=J ¼ 2 at the mid-plane (z=t ¼ 0) for the deep square SENB specimen with a=W ¼ 0:5
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results are nearly the same from low to high loads and they are represented well by a single J–A2 solution
within the range of 1:06 r=ðJ=r0Þ6 5:0. Compared to the deep square specimen, the rectangular specimen
does not show any relaxation of crack-front constraint as the load increases. Also the FEA results almost
coincide with 2D plane-strain results. It implies that the effect of thickness and magnitude of loading on

crack-front constraint can be ignored and the FEA results can be well represented by 2D results for the

rectangular specimen. The radial and angular stress distributions at the plane near the free surface for the

rectangular specimen have the same tendency as the deep square specimen shown in Figs. 5 and 6.

3.3. Stress field for the shallow square specimen

Fig. 8 plots the radial distributions of rrr and rhh obtained from FEA and the J–A2 solution at h ¼ 0� at
the mid-plane (z=t ¼ 0) for the shallow square specimen. Three loading levels are 17%, 20%, 22% of the

limit load and the corresponding normalized loads are J=ðBr0Þ ¼ 0:0024, 0.0106, 0.0230. Similar to the
results from the deep square and rectangular specimens, plane-strain HRR field provides the upper bound
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and plane-stress HRR field provides the lower bound. The angular distributions of rrr, rhh and rrh at

rr0=J ¼ 2 show the same trend as found for the deep square specimen. The deep square specimen shows
that the crack-front field resembles 2D results under the high ratio of applied load to limit load

(P=PL � 0:62). But FEA results for the shallow square specimen deviate early from 2D results under the low
loading ratio (P=PL � 0:17). This can be considered as one of the characteristics of the shallow cracked
specimen; i.e., crack-front constraint is released at a lower load than that of the deep cracked specimen.

Though the radial and angular stress distributions at the plane near the free surface for the shallow square

specimen are not shown here, relatively good agreement is observed between FEA results and the J–A2
solution.
3.4. Fracture parameters through thickness

Through-thickness variations of J at the crack front for the deep square, rectangular, and shallow square
specimens are shown in Fig. 9(a)–(c) respectively. Under low load, all the specimens show that J is nearly
constant through most part of the thickness and decreases slightly toward the free surface. As the load

increases, the difference of J at the center and at plane near the free surface becomes prominent and J
decreases rapidly near the free surface. Under high load, for the deep square and shallow square specimens,

J at the quarter plane (z=t ¼ 0:25) is slightly higher than at the center plane but it decreases drastically
toward the free surface. The rectangular specimen however shows that, under high load, J has the maxi-
mum at the center plane and decreases gradually toward the free surface.

Through-thickness variations of A2 for the deep square, rectangular, and shallow square specimens
are shown in Fig. 10(a)–(c) respectively. For the deep square and shallow square specimens, A2 remains
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relatively constant through the thickness, and only decreases at the region near the free surface. Under low

load, the shallow square specimen shows that A2 increases slightly from the center plane to the quarter

plane (z=t ¼ 0:25) and then decreases drastically toward the free surface. The rectangular specimen shows
the gradual decrease from the maximum A2 at the center plane toward the free surface. From the distri-

bution of A2 along the crack front, most of the high constraints are expected to occur at the center plane
and relatively constant throughout the thickness except near the free surface.

Through-thickness variations of normalized opening stress, rhh=r0, at a radial distance in the range of
1:06 r=ðJ=r0Þ6 5:0 ahead of the crack tip are shown in Fig. 11(a)–(c) for the deep square, rectangular and
shallow square specimens, respectively. For all the specimens, the opening stress at the mid-plane remains

relatively constant or shows a slight increase at the quarter plane (z=t ¼ 0:25). But it decreases quickly as
the free surface is approached. The rectangular specimen shows that, under high load, rhh=r0 has maximum
at the center plane and decreases gradually toward the free surface. It should be noted that the stress drop
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at the region near the free surface is much larger than that caused only by the decrease of J . In addition to
J , relaxation of the crack-front constraint contributes this stress drop as well. It can be said that the fracture
parameter A2 efficiently represents the constraint effect on the elastic–plastic crack-front stress fields for
SENB specimens throughout the thickness.
4. Relationship between crack-front constraint and cleavage fracture toughness

Having the conclusion from Section 3 that the J–A2 solution can characterize the 3D crack-front stress
fields, we investigate the fracture toughness within the framework of J–A2. The aim is to demonstrate that
the parameter A2 can be used to quantify the constraint level for various specimen sizes and crack depth
in cleavage fracture.

4.1. Failure curves

The failure curves based on J–A2 theory that are supposed to control the cleavage fracture are derived
from the experimental data of the rectangular and shallow square specimens. These specimens are chosen

because the rectangular specimen shows the highest crack-front constraint and the shallow square specimen

shows the lowest constraint. The failure curves are based on the RKR model proposed by Ritchie et al.

(1973); that is ‘‘cleavage fracture occurs when the maximum principal stress ahead of a crack tip exceeds a

critical value over a characteristic distance’’. Detail procedures for the J–A2 based failure curve are outlined
in Chao et al. (1994) and Chao and Lam (1996).

Fig. 12 shows the fracture toughness data of the rectangular and shallow square specimens for A36
steel at the temperature of )45 �F that were measured by Sorem et al. (1989) and Wellman et al. (1988).
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In Fig. 12, the fracture toughness data are represented in J–A2 space; x-axis is the A2 value from the J–A2
solution and y-axis is the Jc at the center plane. As the highest stress occurs around the center plane for both
specimens, Jc at the center plane is chosen for this plot. It was reported that experimental data shown in
Fig. 12 are the cleavage fracture with no macroscopic fibrous tearing but they are in the region where linear
elastic theory (KIC validity limits according to ASTM E399-83) does not apply (Sorem et al., 1989).

Fracture toughness data, Jc, are from the tabulated results in Sorem�s dissertation (Sorem, 1989). In this
work, FEA is performed for each of the test specimen to obtain the opening stress ahead of the crack tip at

J ¼ Jc. Then, according to the procedures described in Section 3.1, A2 value corresponding to the Jc is
determined from the opening stress distribution. In Fig. 12, triangular symbols represent the experimental

data for the rectangular specimen and circles represent for the shallow square specimen.

As test data has scatter, the experimental fracture toughness data is bounded by lower and upper bound

failure curves that are derived from each of the minimum and maximum fracture toughness. In Fig. 12, two
pairs of the minimum fracture toughness (Jc, A2), (25 kJ/m2, )0.43) for the rectangular specimen and (85 kJ/
m2, )0.84) for the shallow square specimen are used to generate the lower bound failure curve. Substituting
these two values into Eq. (1), the fracture toughness parameters are obtained as rc=r0 ¼ 2:63 and rc ¼ 0:77
mm. With these two values, the lower bound failure curve for controlling cleavage fracture is written as
rc
r0

¼ Jc
ae0r0InL

� �1=ðnþ1Þ rc
L

� �s1
~rrð1Þ

hh ð0Þ
h

þ A2
rc
L

� �s2
~rrð2Þ

hh ð0Þ þ A22
rc
L

� �s3
~rrð3Þ

hh ð0Þ
i

ð4Þ
This lower bound failure curve is shown as the solid line in Fig. 12 which represents the lowest possible

fracture toughness for A36 steel assuming that the fracture is controlled by the opening stress ahead of the
crack tip. Similarly, the upper bound failure curve is generated using the maximum fracture toughness
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(Jc, A2) at (43 kJ/m2, )0.32) and (186 kJ/m2, )0.80), and the fracture toughness parameters are determined
as rc=r0 ¼ 2:87 and rc ¼ 1:0 mm. The upper bound failure curve is shown as the dashed line in Fig. 12.
These two failure curves are expected to represent the failure behavior of any flawed structures made of this

material; i.e., cleavage fracture would occur if (J , A), the applied J and the crack-front constraint A2, is
located between these two curves.

4.2. Prediction of the fracture toughness of the deep square specimen

For the purpose of demonstrating the failure curves, the fracture toughness of the deep square specimen

is predicted with the failure curves generated in the previous section. Fig. 13 compares the experimental

data of the deep square specimen that were measured by Sorem (1989) with the prediction by the failure
curves. The fracture toughness data for the deep square specimen are well captured by the failure curves as
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shown in Fig. 13. It can be concluded that the J–A2 fracture criterion appears to predict well the effect of
crack depth and specimen size on cleavage fracture.
4.3. Fracture toughness and scatter band

In Fig. 14, the opening stress distributions at the crack front are plotted at the applied J equal to the
minimum and maximum fracture toughness. Hollow (solid) symbols in Fig. 14 represent the radial dis-

tributions of the opening stress when each specimen has the minimum (maximum) fracture toughness. It

shows that crack opening stress distributions are nearly the same along the ligament when specimens have

the minimum or maximum fracture toughness. This observation is in line with the RKR model on cleavage

fracture which postulates that fracture would occur as the opening stress in front of the crack reaches a

critical value regardless of the specimen size and crack depth. Even though all the specimens show the
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different scattering, Fig. 14 indicates that the crack opening stress distributions are nearly identical at their
minimum and maximum critical J or fracture toughness.
Fig. 15 illustrates the fracture toughness data and the difference of Jc between the minimum and maxi-

mum toughness values for all the specimens. The rectangular specimen shows a relatively small range of

scatter, the deep square specimen shows the substantial increase of scatter, and the shallow square specimen

has the most scatter. In Fig. 7(b), the normalized opening stress field for the rectangular specimen is found

nearly the same as 2D results over a wide load range. Therefore, 2D plane-strain results can be considered

as the opening stress fields for the rectangular specimen. For the deep square specimen at the mini-

mum fracture toughness, the stress field is not much different from the 2D results (see the case of
J=ðBr0Þ ¼ 0:0038 in Fig. 3(b)). This is why the minimum fracture toughness for these two specimens are



0

40

80

120

160

200

-1.0-0.8-0.6-0.4-0.2

A2

J 
(k

J/
m

2
)

Shallow square SENB test

Rectangular SENB test

J-A2 Upper Bound Failure Curve

J-A2 Lower Bound Failure Curve

Fig. 12. Failure curves for A36 steel at )45 �F.

0

40

80

120

160

200

-1.0-0.8-0.6-0.4-0.2

A 2

J 
(k

J/
m

2
)

Deep square SENB test

J-A2 Upper Bound Failure Curve

J-A2 Lower Bound Failure Curve

Fig. 13. Comparison of experimental fracture toughness data with the prediction for the deep square SENB specimen.

6280 Y. Kim et al. / International Journal of Solids and Structures 40 (2003) 6267–6284
close as shown in Fig. 15. But as the load increases, the deep square specimen shows relaxation of con-
straint at the crack front. So, in order to achieve the same stress level as that of the rectangular specimen,

more loads and consequently more J should be applied to the deep square specimen. This leads to higher J
value as the maximum fracture toughness for the deep square specimen, which is clearly demonstrated by

the remarkable difference between DJ1 and DJ2 in Fig. 15. In case of the shallow square specimen, there are
composite effect of geometry and loading. Due to the low crack depth ratio, 2D result for the shallow

square specimen is far below the plane strain HRR field. In addition to this, the constraint relaxation occurs

at the early loading level. These affect the crack-front constraint and let the shallow square specimen have

the highest values for the minimum and maximum fracture toughness with the most scattered band (DJ3
in Fig. 15).
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In addition to this qualitative explanation, current study shows that the scatter of data can be quanti-
tatively explained by the crack-front constraint. As shown in Figs. 12 and 13, the different scatters of the

fracture toughness data are well captured by the upper and lower bound failure curves based on the crack-

front constraint.
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4.4. Size-independent fracture toughness

Fig. 7 shows that crack-front fields are well represented by 2D results up to the high level of load for the

rectangular specimen. This load level covers the range of the fracture toughness of A36 material at )45 �F.
As shown earlier, the deep square and shallow square specimens show a loss of constraint as the load

increases. In contrast, the rectangular specimen reveals no sign of relaxation on the crack-front constraint

as the load increases. Therefore, the scattering of the toughness data for the rectangular specimens can be

attributed only to the variation of material properties. Fracture toughness obtained under these conditions

have been considered as size-independent fracture toughness (Dodds et al., 1991; Nevalainen and Dodds,

1995; Koppenhoefer et al., 1995) i.e., insensitive to constraint. No further increase of the specimen size––

thickness, width or height––is expected to lower the fracture toughness and reduce scatter band than that of

the rectangular specimen unless the specimen geometry and crack depth ratio are changed.
5. Concluding remarks

In order to account for the constraint effects on 3D crack-front fields, detailed elastic–plastic FEA are

performed for SENB specimens. Both rectangular and square cross-section of the specimens with a deep

crack of a=W ¼ 0:5 are considered to investigate the effect of specimen size. A square-cross-section speci-
men with a shallow crack of a=W ¼ 0:15 is also considered to examine the effect of crack depth. FEA results
are compared with the J–A2 three-term solution to check the validity of the parameter A2 and to quantity
the constraint effect for 3D cracks. Also, the scatter behavior of cleavage fracture toughness data is

investigated.

The results can be summarized as follows.

(1) For all SENB specimens, FEA results demonstrate different constraint effects on the crack-front stress

fields. The square specimens show a loss of constraint as the load increases but the rectangular speci-

men does not. For the shallow square specimen, the relaxation of constraint begins at lower load
than the deep square specimen. In all cases, the J–A2 solution match well with the 3D stress fields

within the interested range of 16 r=ðJ=r0Þ6 5 at the mid-plane and even at the plane near the free
surface.

(2) Values of J , rhh and A2 at the crack front along the thickness direction are studied. Generally their maxi-
mum values occur at the mid-plane and the minimum at the plane near the free surface. They remain

relatively constant along most part of the thickness and drastically decrease at the region near the free

surface. Under high load, the rectangular specimen shows the highest value at the center plane which

gradually decreases as the free surface is approached.
(3) From comparison of cleavage fracture toughness data, it is found that the crack opening stress is the

same for all the SENB specimens at the minimum or maximum fracture toughness. It implies that cleav-

age fracture is indeed controlled by the opening stress distribution and there is a close relationship be-

tween the crack-front constraint and the fracture toughness.

(4) 3D crack-front constraint quantified by J–A2 solution reveals the relationship between crack-front
stress fields, constraint, and fracture toughness. With the introduction of J–A2 based failure curves,
it is shown that the minimum fracture toughness and scatter band can be predicted for the specimens

with different constraints. All the fracture toughness data chosen for current study experienced the
cleavage fracture without any ductile tearing. However, there was extensive tearing plasticity before

fracture and the testing temperature )45 �F is in the lower transition region. Our analysis in the current
paper indicates that the J–A2 solution can be used for characterizing the cleavage fracture toughness
in the transition region.
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(5) The crack-front stress fields at the mid-plane coincide with 2D stress fields only under small loading

conditions. As the load increases, the stress fields for the deep square and shallow square specimens de-

viate from 2D results considerably but not for the rectangular specimen. This implies that the rectan-

gular specimens are insensitive to the constraint and therefore, fracture toughness values measured
from these specimens can be regarded as the size-independent toughness for 3D SENB specimens.

(6) Although the constraint level of SENB specimens with a=W ¼ 0:15 and 0.5 cover a wide range of con-
straint levels, further validation of the theory through comparison with tension dominated specimens,

e.g. center cracked tension specimen, would be very meaningful.
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